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Stability of Buoyancy-Induced Flows Adjacent to a Vertical 
Isothermal Surface in Cold Pure Water 
- N e u t r a l  S t a b i l i t y  in t h e  R a n g e  O _ < R ~ 0 . 1 5 1 5 -  

Y o u n g - K y u  H w a n g *  

(Received March 20, 1996) 

Numerical solutions of the hydrodynamic stability equations for buoyancy-induced flows 

adjacent to a vertical, planar, isothermal surface in cold pure water have been obtained for 

various values of the density extremum parameter R =  ( 7 ~ - T ~ ) / ( T , - 7 L ) .  The present 

numerical study yields neutral stability results for the region of  the flows corresponding to 0.0 

<_i/;?<0.1515. where outside buoyancy force reversals arise. Also, it includes the relative stability 

of the three previously predicted multiple, steady-state solutions of  the flow. When the stability 

results of the present work are compared to the previous experimental data. the numerical results 
agree well qualitatively. 

Key Words  : Neutral Stability, Outside Buoyancy Force Reversal, Density Extremum Parame- 
ter 
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B : Frequency parameter 

l~'* : B at C:,.,- 
c' : Wave speed 

D : Characteristic length 

f ( r / )  : Generalized stream function 

f : Physical frequency 

g- : Acceleration due to gravity 
, D - |  

(; ' Modified Grashof  number, 4 ((,r.,.,/4) 

G,.r : Critical Grashof  number 

G r ( x )  : Local Grashof  number 

t [ (~ )  : Nondimensional disturbance pressure 

amplitude funtion 

/ I ( y )  : Disturbance pressure amplitude func- 

tion 

i : r  1) 
kl ,  k2 : Constants 
M :Largest  magnitude of any of the 

eigenvector components 

P r  : Prandtl number 

q :Exponent  in the density relation of 
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Gebhart  and Mollendorf(1977) 

: Density extremum parameter 

: Nondimensional  disturbance tempera- 

ture amplitude function 

Disturbance temperature amplitude 
function 

: Temperature 

: Characteristic velocity 

: Nondimensional local buoyancy force 

: Coordinates 

: Coefficient in the stability equation, 

,~qio,,- I,'i" ~(o,, R ) / ! o , , - A ' !  

G r e e k  sy mb o l s  

a : Complex wave number, a~ ~ ia~, 
a =a,v for neutral stability 

a'* a' at (;or 
a r  Thermal expansion coefficient in the 

density relation of Gebhart and Mol- 

lendorf (1977), (~ q 

: Disturbance frequency 

: + 1.0 for upflow. -- 1.0 for downflow 

: Thermal boundary layer (in Fig. 2) 
Similarity variable 

:Po in t s  of inflection in the velocity 
profile 
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0 ( 7 )  

b' 

/9 
~ ( 7 )  

~ ( y )  

: N o n d i m e n s i o n a l  t e m p e r a t u r e ,  (7" 

- T ~ ) / ( 7 ; ,  "ILl 
: Kinematic viscosity 

�9 Density 

: Nondimensional  dis turbance velocity 

ampli tude function 

: Disturbance velocity ampli tude func- 

tion 

qY(x, 3;) : Stream function 

Subscr ipts  

/~ : Base flow properly 

m : At the extremum condi t ion  

I : Imag ina ry  

0 : Surface condi t ion 

N : Real 

:-~:) : At ambient  condi t ion  

Other  Symbols  

: Dimensional  quantity 

1. I n t r o d u c t i o n  

The existence of a density extremurn near 4~ 

dramatically affects the characteristics of buoy- 

ancy induced flows in the cold pure water (Geb- 

hart. 1979:Gebhar t ,  et al. 1988). The occurrence 

of bi-directional buoyancy forces in the thermal 

boundary  layer complicates their stability arm- 

lyses. This study is file cont inua t ion  of  I lwang et 

al. (1993) to analyze the neutral stability of 

laminar  vertical natural convection flm~s in the 

cold pure water in the presence of buoyancy force 

reversals. In this part, we first treat the case of 

upflow, i. e., outside buoyancy force reversals. 

Our results are ',.cry accurate because, in con- 

trast to the previous works obtained by the 

method of simple shooting (e. g., Higgins and 

Gebhart ,  1983;Qureshi  and Gebhart ,  1986), the 

stability equations has been solved using an ade- 

quate comput ing code ( C O L N E W )  designed to 

accurately solve two-point  boundary-value  prob- 

lems (Ascher et al., 1981 ;Bader  and Ascher, 

1985). Moreover, our results are new in that we 

have analyzed the neutral stability of three multi- 

ple steady-state solutions found in this problem 

by El Henawy et al. (1982). 
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Fig. l The coordinate systems 

Most of the past stability studies has utilized 

the Boussinesq formulat ion ot" the density as a 

l inear function of temperature,  such as for flows 

in air, warm water etc. Recently, Gebhart  and 

Mahajan  (1982) and Gebhart  et al. (1988) have 

comprehensively summarized the literature in this 

regard. 

In the present study, the system under consider- 

ation las seen in Fig. 1) is quiescent, cold, pure 

water adjacent to a vertical, planar, isothermal, 

impermeable surface. In this si tuation the Bous- 

sinesq approximat ion does not accurately express 

the buoyancy force. 

This is due to the existence of the density 

extremum of  cold water (its density is maximum 

at "f,,,~ 4.029325T' at I bar) in the thermal 

boundary  layer. A considerable buoyancy force 

reversal arises across the thermal boundary  layer. 

To predict the resulting subtle flow patterns, the 

following density extremum parameter was 

defined by Gebhart  and Mollendorf(1978) 

R=, .E(:_7 --l~ (1) 

where 7), and "F~. are the temperalure of the 

isothermal surface and the temperature of the 

ambient  medium (cold pure water), respectively. 

The analysis of" the steady-state flows in the 

presence of buoyancy force reversals in the range 

ot" 0 <  A' < 0.5 is complex. To save space, we only 

refer to Wilson and Vyas (1979), Carey and 
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Gebhart (1981) for the experimentally observed 

flows, EI-Henawy et al. (1982), Gebhart and 

Mollendorf (1978), and Carey et al. (1980) for the 

representation of similarity solutions for such 

flows. 

This study is concerned principally with the 

presentation, for various values of the density 

extremum parameter A' in the range of 0<5/?_<0. 

1515, of numerical results that predict realistic 

physical conditions of neutral stability for the 

base flow generated by natural convection adja- 

cent to a vertical, isothermal plate (as seen in Fig. 

I) in cold pure water. 

The hydrodynamic stability of these base flows 

is of special interest, since under these conditions 

outside buoyancy force reversals (such as those 

seen in Fig. 2) exert strong influence upon the 

flow and the multiple-steady-state solutions of 

EI-Henawy et al. (1982) are predicted to exist. Up 

to the three steady-states exist at the same /? for 

the flow (as seen in Fig. 3), in the range 0.15149 

~R<0.15180.  Their influence on instability will 

be shown later. 

The numerical study of the hydrodynamic sta- 

bility for non-Boussinesq situations is difficult as 

mentioned by Hwang et al. (1993). The difficulty 

exists partly because the base flow itself is sensi- 

tive to buoyancy force reversal via the nonlinear 

buoyancy-force term in the mathematical model. 

An additional significant difficuhy may come 

from the presence of a singularity in the linear 

stability equations as used by Qureshi (1980) and 

Higgins (1981): see also, Higgins and Gebhart 

(1983) and Qureshi and Gebhart (1986). Thus, 

reformulated stability equations of Hwang et al. 

(1993) to be solved is required in order to make 

them nonsingular. 

Due to the difficulties mentioned above, most 

of the previous numerical studies were limited to 

the stability analyses for the simple cases of 

unidirectional buoyancy-induced flow : Hig- 

gins(1981) for several values of /~  with 1.0_<R~ 

8.0, /r -0.4, and / r  (see also Higgins and 

Gebhart, 1983); Qureshi (1980) for / ~ = 0  (see 

also Qureshi and Gebhart, 1986). 

Hwang et al. (1993) obtained rather complete 

neutral stability results for the downflow in the 

Fig. 2 

Fig. 3 

T 
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u 

Illustration of density behavior near T~, ; R 
:-0.1, outside buoyancy force reversal. 
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Detail of the variation of mass-flow rate .fb 
(o:)) with R. The marks A, B, and C corre- 
spond to the three multiple-steady-state solu- 
tions for the base flow at R=0.1515. From 
EI-Henawy et al.(1982) 
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Fig. 4 Distributions of vertical velocity components 
f~(r/) of the base flows. The arrow indicates 
increasing R=0.0, 0.05, 0.10, 0.11667 and 0. 
15 

Fig. 5 Distribution of normalized temperature 0o 
(r/) of the base flow. The arrow indicates 
increasing /?=0.0, 0.05, 0.10, 0.[ 1667 and 0. 
t5 

range of 0.29181 _< R_< 0.5, where inside buoyancy 

force reversals arise. They found that an increase 

in the magnitude of inside buoyancy force rever- 

sals, which were associated with the locations of 

the two points of inflection in the vertical velocity 

components of base flow, always caused the flows 

to be significantly more unstable. 

The experimental studies by Higgins and Geb- 

hart (1982) and Qureshi and Gebhart (1981) in 

cold water indicated that the density extremum 

behavior was found to delay transition, compared 

to the results in the water at room temperature. 

The present numercal study includes neutral 

stability results for the region of the base flows 

corresponding to 0.0_<N_<0.1515 for P r = l l . 6 .  

In particular, neutral stability curves are obtained 

at R=0.1515 for the three steady-states of the 

base flow which were found by EI-Henawy et al. 

(1982). The effect of outside buoyancy force rever- 

sals on instability will be shown. 

2.  T h e  G o v e r n i n g  E q u a t i o n s  

2.1 Base flow 
The similarity equations for steady laminar 

base flows (with the coordinate definitions in Fig. 

1) are well known;  for example, E1-Henawy et 

al. (1982), Gebhart and Mollendorf (1978), and 

Carey et al. (1980). To formulate them the follow- 

ing nondimensional quantities were used: r/(a 

similarity variable), fb (r]) (stream functioin), and 

0~(r/) (temperature), where 

_ yG ~ ( x , y ) = ~ G / ~ ( ~ )  v - 4 ~ '  

T -  T= (2a) 
Oh(v) -- T o -  T~ 

and 

G = 4 ( 1 G r ( x ) )  �88 

Gr (x) - gx3a 17"o- T~I q (25) - -  ~]2  T I 

Here aT and q are the thermal expansion coeffi- 

cient and exponent, respectively, from the density 

relation of Gebhart and Mollendorf (1977). For 

conditions at 1 bar pressure and no salinity in the 

range of temperature 0<_ T_<20~ aT=9.297173 

• 10-6(~ )-q and q =  1.894816. The equations for 

the base flow in similarity form are: 

f~'" + 3fJ[;  -- 2f~ 2 
+ 8{Io~-RI ~-PRI q} = 0  (3a) 
Of" + 3Prf~O'b=O (3b) 

with boundary conditions 

L (o) = /b (O) = / ~ ( ~ )  
= 0~ (0) -- 1 = 0b (oo) = 0  (4) 

where 6 =  + 1 for upward flow, 8 =  -- l for down- 

ward flow ; see Gebhart and Mollendorf (1978). 

P r = l l . 6  is the Prandtl number for cold pure 

w a t e r .  
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Here we only considered upward flows in the 

range 0.0<-R<-0.1515, where outside buoyancy 
force reversals occured. The boundary-value 
problem (3a, b ) - ( 4 )  was solved on intervals [0, 
r/~ with r/==23--300 by using two computer 
codes: COLNEW (Ascher et al., 1981; Bader 
and Ascher, 1985) and BOUNDS (Deuflhard and 
Bader, 1982). Examples of dimensionless vertical 
velocity and temperature profiles for 0 <  R <-0.15 
are given in Figs. 4 and 5, respectively. Also, 
Figure 6 from El-Henawy et al. (1982) shows the 
velocity profiles of the three multiple-steady-state 
solutions for the base flow at /?=0.1515. 

Buoyancy force reversals cause significant 
effects on hydrodynamic transport. As /? 
increases from 0 to 0.15, the downward buoyancy 
force, near the outer edge of the thermal boundary 
layer increases. For multiple steady-states of the 
base flow, the downward buoyancy force, which 
becomes stronger, causes an outside flow reversal 
as R increases from 0.15 to 0.1515 as shown in 
Fig. 6. 

As R increases from 0 to 0.1333, the location of 
the single point of inflection in the profiles of the 
vertical component of  velocity shifts closer to the 
isothermal surface(r/--0) ; see Fig. 4 and Table 
1. However, for 0.1333<--/?_<0.15, the location of 
point of inflection remains r/p.z 0.97 and does 
not change singnificantly. But the value of its 

stress f~'(r/p.~) increases significantly as R 
increases. 

The shift of the location of point of inflectioin 
associated with its strength might increase the 
limit of stability of flow, just as in the forced flow 
problems, which will be discussed later. 

2.2 The l inear  s tabi l i ty  equat ion 

A linear stability o f  two d imens ional  distur- 

bances is considered. The disturbance quantities 

are normalized in the fo l lowing  manner,  where D 

and U are the charactreristic length and velocity : 

~(Y) S (~) - "if(Y) 
�9 (rl) UD ' T~S-=F= 

H O D -  Er(Y) a=&D, f l= flD 
pU 2 , U 

4x zig 2 (5) 
D = ~ ,  U =  4x 
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Fig. 6 The three multiple-steady-state solutions for 
the base flow at R=0.1515, which corre- 
spond to 3 points in Fig. 3, in terms of (a) 
vertical velocity components f~ and (b) hori- 
zontal velocity components 3f~-r/f~. From 
E1-Henawy et a1.(1982) 

The reformulated stability equations by Hwang et 
al. (1993) are used to avoid the singularity in 
buoyancy force term. The nonsingular Orr- 
Sommerfeld equations for buoyancy-induced 

flows are : 

x-momentum, 

(f'b--c) CI)" f ; '  q) = -- H + ialG-G (q) " 

a20" + ZoS) (6a) 

y-momentum, 

(f'o c) O - H ' 2 + ~ ( O " - a 2 0 ) ( 6 8 )  
OL lO'Cr 

energy, 
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1 

( f~ -  c) S - 0~O = ~ - p r  (S" - a2S) (6c) 

w h e r e c = / 3 / a ,  ~ = + 1 . 0  for upflow and 6t-- 

--1.0 for down flow, and 

Z -  ~ (O~-R) ,0 _/?1~_~ 

the nondimensional boundary conditions for an 

isothermal vertical surface are: 

(0) = ~ '  (0) = S (o) - o '  (oo) 

- S (co) = H ( ~ )  = 0 (7) 

The linear stability Eqs. (6a~c)  and (7) consti- 

tute a complex-valued, sixth-order, linear systems 

of homogeneous differential equations. The 

eigenvalues of the system are the nondimensional 

wave number a and frequency/3. The ratio a//3 
is referred to as the wave speed c. 

3. N u m e r i c a l  M e t h o d  

To reduce the error propagation and to avoid 

the inaccuracy in simple shooting of Qureshi 

(1980) and Higgins (1981), the two-point- 

boundary-value-problem solver COLNEW (As- 

chef et al., 1981 ; Bader and Ascher, 1985) was 

used. With it we were able to compute the accu- 

rate numerical solutions of the stability equations 

in the range 0.0_</?<_0.1515. These could not be 

found by simple shooting. 

To generate the families of solutions, two differ- 

ent ad hoc schemes were used. These are de- 

scribed below. Since there is no way to normalize 

the solutions of eigenvalue problem (6a--c) and 

(7) which is subject to homogeneous boundary 

conditions, an alternative must be found to avoid 

the trivial solution. 

The first scheme, which succeeded, was to 

replace the boundary conditions ~ ( 0 )  --g}~(0) = 

0 by 

S)e(0) = kl, S'1(0)---k.2 (8) 
with 0.25 _< kl _< 1.0 and 0.1 < k,~ < 1.0. For moder- 

ate values of a and /3, we use k~--k2= 1.0. The 

computing procedure employed to use the orth- 

ogonal collocation code COLNEW for obtaining 

the neutral stability curve is described below. For 

a given value G, one guesses a pair ofeigenvalues 

a and ft. One then solves the boundary value 

problem (6a--c) and (7) with the modified 

boundary conditions (8), replacing ~,~(0) = r 

--0, using COLNEW, and iterates by adjusting 

the values of a and /3 until the boundary condi- 

tions O~(0) = ~) (0 )=0  are satisfied with I 
+l~;(0) l<_10 -0 

The second scheme is to add the trivial differen- 

tial equations 

a ' = 0 , / 3 ' - -  0 (9) 

to the system (6a--c) and to impose two nonzero 

conditions S ~ ( 0 ) - - -  k~ and S ' l ( 0 ) = -  kz in addi- 

tion to (7). This scheme yields exact numerical 

solutions of the original eigenvalue problem (6a 

--c), (7) and (9). However, accurate,, initial gues- 

ses are required to get it to work. 

When we used the first scheme, we insisted that, 

for a solution to be accepted, the following criter- 

ia were all met: 

min ( ~ ) ~ ,  j ~ ( O ) ~ ) < -  

(10b, 

where M is the largest magnitude of any of the 

eigenvector components(i, e., ~, ~", ~",  S, S', 

H)  on 0_< r/_< r/~. In addition, the error estimates 

given on output by COLNEW are less than l0 -4. 

The second scheme was used for the purpose of 

verification and improvement of the numerical 

results, which were obtained by the first scheme. 

4.  N u m e r i c a l  R e s u l t s  

Neutral stability results that have', satisfied the 

standards for accuracy Eqs. (10. a - b )  have been 

obtained for several values o f / ?  in the 0<~/?<0. 

1515. In particular, for /?==0.1515, we obtained 

neutral stability curves for the three: steady-states 

of the flow. These results are presented in Table 1 
and Figs. 7--10. 

Some of our numerical results o~t stability are 

presented in (G, /5')-plane, 

where 

B = f l ( ; ~ = ~ f ( ~ a T l T o - T ~ l q )  -2 (11) 

This parameter B has no x dependence; it is 
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Fig. 7 Portions of computed neutral stability curves 
in the (G, a) plane 
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Portions of computed neutral stability curves 
in the (G,/3) plane. 

proportional to the physical frequency f .  Con- 

stant frequency paths for G are horizontal 

straight lines in the (G, /3)-plane; see Figs. 9 

--10. 

If IT o -T=]  is fixed, a plot or a table in the 

neutral stability planes (i. e., (G, t3) or (G, 

fl)-plane also (G, a)-plane) is useful in quantita- 

tively analyzing the linear stability results for 

various values of /? ,  because the parameters G, a ,  

/3, and /3 are dependent upon IT o-  T~[ q. 
The critical Grashof number Gcr steadily 
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C o m p u t e d  n e u t r a l  s t a b i l i t y  c u r v e s  i n  t h e  ( G ,  

B) plane. 
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Fig. 10 Computed neutral stability curves in the (G, 
B) plane for the three steady-states of the 
base flow at ~--0.1515 

increases as R increases in the range 0.0_<R<_0. 

1333, but, interestingly, further increase of R 

causes Gcr to decrease. However, at the same time 

the value of B* (i. e., /3 at Gcr) and B,,ax consis- 

tently decrease as R increases. The nose of a 

neutral stability curve shifts downward B = 0  in 

the (G, B)-plane and its shape becomes sharper 

as R increases. As consequence of these observa- 
tion, the upper limit of  unstable frequencies with 

respect to R is predicted to be reduced and the 

flow is more unstable for lower frequencies, as R 
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Table 1 Values of ;Tp~, -f~(;Tp.t), B* and a* for various values of R. 
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R ;7pl f~; (rlp.l) G,-,. B* a* 

0.0 

0.05 

0.I0 

0,11667 

0.1333 

0.15 

0.1515A 

0.1515B 

0.1515C 

1.163 

1.086 

1.004 

0.982 

0.967 

0.971 

0.02847 

0.02575 

0.02574 

0.02693 

0.02925 

0.03441 

41.89 

44.16 

46.55 

47.22 

47.69 

47.39 

47.17 

46.98 

47.01 

0.19536 

0.18027 

0.16188 

0.15542 

0.14506 

0.12955 

0.12646 

0.12449 

0.12451 

0.5928 

0.598 I 

0.6034 

0.608 I 

0,5969 

0,5638 

0,5548 

0,5477 

0.5473 

=1 
S~ 

o 

~ 

X 

?. H. 

e=. 

St 

17 

Fig. l I  Plots of eigenvector components vs ;7 corre- 
sponding to the base flow at R=0.05 for a :  
0.6893, fl:0.0570, G=44.60 and ;7=-=23.2 

increases from 0.0 to 0.1515. 

It is also observed here that the location of a 

point of inflection in a base flow has a strong 

relationship to the critical Grashof number Gcr. 

As R increases from 0 to 0.1333 (and the heat 

transfer rate --0k(0) decrease from 1.04697 to 0. 

8555), the location of the point of intlection r/o.~ 

in the profile of the velocity of the base flow f~ 

shifts from r/p.t=l.163 at R=:0  to r/p.t=0.967 at 

/?=0.1333 ; at the same time the stress -f~'(r/p.t) 

decreases (see Table 1). In addition, the present 

results show that the Get increases from 41.89 at 

/ ? = 0  to 47.69 at /?=0.1333. But, as ,/~ increases 

from 0.1333 to 0.15, the r/~.~ increases from 0.967 

to 0.971 and the corresponding -f{'(r/p.r 

increases from 0.02925 to 0,03441. Also, Gc~ 

decreases from 47.69 at /?=0.1333 to 47.39 a t / ?  

=0.15. As the consequence of the above results, it 

is found that the shift of r/p.l to r/==0 with its 

weaker stress --f~'(r/p.~) makes the welocity pro- 

file of the base flow more stable. 

These phenomena are due to the effect of 

outside buoyancy force reversals. A slight 

increase of the downward buoyancy three in the 

outer region of the thermal boundary layer causes 

the base flow to be stable, but a further increase of 

this force causes the base flow to become unsta- 

ble, Note, while buoyancy force reversals occur 

for 0 < / ? < 0 . 1 5 ,  they are too weak to cause any 

reversals in the flow. 

Figure I1 shows the typical shape of 

eigenvector components corresponding to near 

the nose of the neutral stability curves at /~ =0.05, 

which satisfy the accuracy criteria (10. a-b). In 

this figure, the real and imaginary parts of 
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eigenvector components (~ ,  ~' ,  S, H)  are nor- 

malized by their maximum values. In this figure, 

the maxima or minima of ~, ~ ' ,  S, H occur very 

close to r / - 0 .  The locus of the peak positions 

associated with the large value of r/=(up to 300 at 

R--0.1515) causes serious difficulties in solving 

the stability equations as R increases from / ~ = 0  

toward /?=0.15. (Note that the large value of r/= 

is inevitably required for accuracy in computa- 

tion. This is due to the decrease in the value offb 

(co) of the corresponding base flow (E1-Henawy 

et al., 1982).) 

In general, for 0_<R_<0.1515, the sensitivity of 

the eigenvalues a,  fl to the modified Grashof 

number G is so high near the nose of a neutral 

stability curve that the ranges between the upper 

and lower portions of a neutral stability curve in 

the (G, a)  or (G, fl)-plane are relatively much 

wider than the same ranges corresponding to a 

flow for 0.29181_<R_<0.50 (Hwang et al., 1993). 

Also, it is found that the critical Grashof number 

Go,- corresponding to the flow for 0_<R'~<0.1515 

is relatively higher (i. e., GcT_>41.89) than the Gc,- 
corresponding to the flow for 0.29181 <_/x'<~0.5 (i. 
e., Gcr~<22.81). This significant difference is due 

to the characteristic features of the base flows 

associated with the outside buoyancy force rever- 

sals. 

5. Discuss ion and Conclusion 

The present numerical results indicate that 

when the parameter R is changed, the characteris- 

tic shape of the corresponding neutral stability 

curve is systematically changed : the critical Gra- 

shof number G~.r increases for 0 < /~  < 0.1333, but 

the upper limit of unstable frequency for flows 

/:/max and the quantities fl* or B* (i. e., fl or /3 

at Gc,-) decrease at the same time ; see Figs. 8 and 

9. It is clear from our stability results that the 

unstable frequency range of disturbances becomes 

narrower as /7 increase. In other words, the band 

of corresponding favored frequency is reduced. 

Also, the neutral stability curves have blunter 

noses as /~ decreases. From the above tendencies, 

we conjecture that the corresponding spatial 

amplification contours would have more sharply 

pointed noses as R increases further toward 0.15. 

We also conjecture that the most favored fre- 

quency, which is the frequency that, according to 

theory, amplifies most quickly as the disturbance 

travels downstream, is decreased since both value 

of /3* and of Bmax decrease as R increases. We 

believe these speculations are reasonable even 

though we have not performed computations to 

obtain the full details of the spatial amplification 

contours. 

When we compared the stability results of the 

present work to the experimental data of Higgins 

and Gebhart (1982) at R-~0.0 and R-~0.12, the 

numerical results agree reasonably in a qualita- 

tive way with the experimental data. They obser- 

ved that for R ~ 0 ,  the data lie at a frequency 

slightly higher than the theoretical frequency B = 

0.36. The range of frequencies which arose at each 

G location is broader than has been observed in 

warm water. Some intermittent bursts of turbu- 
lence were detected at ( ;=378  for R ~ 0 .  For/~-~ 

0.12, the frequency bands lie closer to, and even 

below /3=0.36. The band is narrower than that 

found at R~-0.0. For A'~0.12, Higgins and 

Gebhart (1982) observed a small amount of burst 

activity at G - 3 8 5 .  From their observation, the 

point of transition to turbulence occurs some 

eight or nine times of Gcr downstream. Also, their 

observation implies that the neutral stability 

curve corresponding to R--0.12 lies left and shifts 

downward with respect to the neutral stability 

curve corresponding to E ' - -0  (see also Table 1). 

Higgins and Gebhart also observed that at G -  

417, the disturbances corresponding to /,?=0.12 

were more vigorous than those corresponding to 

17-~0. They judged that disturbances correspond- 

ing to R-~0.12 were amplified more quickly 

downstream than those corresponding to R-~0.0. 

From the results of our stabilizing calculation, 

it is found that there is a stabilizing or destabiliz- 

ing effect due to the characteristics of the buoy- 

ancy force. In the range 0_<R<0.1333, a small 

amount of the buoyancy force reversal causes the 

critical Grashof number to increase singnificantly. 

However, in the range 0.1333< N_<0.15, a further 

increase of the outside buoyancy force reversal 
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causes the critical Grashof  number to decrease. 

Namely, as R increases, the first instability of the 

flow occurs later for 0<_R~<0.1333, then occurs 

sooner for 0.1333<R<_0.15. 
At the same time the location of the single 

point of inflection r/p.~ (in the profile of the 

velocity of the base flow) and its stress-j~' (r/p.D 

strongly dependent upon the downward buoy- 

ancy force (in the outer portion of the thermal 

boundary layer) as mentioned in sec. 4. Further 

increase of this force causes an outside flow rever- 

sal which associated with two points of inflection 

to exist in the multiple-steady-state-solution 

region 0.15<R_<0.1518 found by EI-Henawy et 

al. (1982), such as the two steady-states of the 

base flow at R=0.1515 corresponding to the 

marks B and C in Figs. 3 and 6. From our results 

(as seen in Fig. 10 and Table 1), two points of  

inflection possess slightly lower values of the 

critical Grashof number than those with one. 

Thus, it is predicted that further increase of the 

downward buoyancy force cause the correspond- 

ing flow in the region 0 .15</r  to become 

slightly unstable. 
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