498 KSME Journal, Vol. 10, No. 4, pp. 498~ 508, 1996
Stability of Buoyancy-Induced Flows Adjacent to a Vertical
Isothermal Surface in Cold Pure Water
-Neutral Stability in the Range O<R <0.1515-
Young-Kyu Hwang*
(Received March 20, 1996)

Numerical solutions of the hydrodynamic stability equations for buoyancy-induced flows
adjacent to a vertical, planar, isothermal surface in cold pure water have been obtained for
various values of the density extremum parameter R=: (7, — T.)/(T. - Tw). The present
numerical study yields neutral stability results for the region of the flows corresponding to 0.0
< R <0.1515. where outside buoyancy force reversals arise. Also, it includes the relative stability
of the three previously predicted multiple. steady-state solutions of the flow. When the stability
results of the present work are compared to the previous experimental data. the numerical results
agree well qualitatively.

Key Words: Neutral Stability, Outside Buoyancy Force Reversal, Density Extremum Parame-
ter
Gebhart and Mollendorf(1977)
Nomenclature R : Density extremum parameter
B . Frequency parameter S (7) . Nondimensional disturbance tempera-
B* DB at (., ture amplitude function
1% . Wave speed S(v) . Disturbance temperature amplitude
D : Characteristic length function
J(n) : Generalized stream function T : Temperature
f . Physical frequency U7 . Characteristic velocity
g . Acceleration due to gravity W (%) . Nondimensional local buoyancy force
¢ . Modified Grashof number, 4 ((;;-./4) v Xy * Coordinates
Coer . Critical Grashof number Z, . Coefficient in the stability equation,
Gr(x) : Local Grashof number Sq\6,— R (6, R)/16,- R
H(n) . Nondimensional disturbance pressure
amplitude funtion Greek symbols
Hy) . Disturbance pressure amplitude func- a . Complex wave number, a, 4 /a,,
tion a = a; for neutral stability
I Y- 1) a* a at G,
ky, ks : Constants ar . Thermal expansion coefficient in the
M : Largest magnitude of any of the density relation of Gebhart and Mol-
eigenvector components lendorf (1977), (°C) ¢
Pr : Prandt] number B . Disturbance frequency
q . Exponent in the density relation of ¢ . + 1.0 for upflow, — 1.0 for downflow
Sr : Thermal boundary layer (in Fig. 2)
n#(x, v) : Similarity variable
* Department of Mechanical Design, Sung Kyun M. : Points of inflection in the velocity
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6(7) . Nondimensional temperature, (7
- T /Ty Tw)

v . Kinematic viscosity

P . Density

D (7) . Nondimensional disturbance velocity
amplitude function

D(v) . Disturbance velocity amplitude func-
tion

¥y, v) . Stream function

Subscripts

b . Base flow property

7Y, . At the extremum condition

[ . Imaginary

() . Surface condition

R . Real

) : At ambient condition

Other Symbols
. Dimensional quantity

1. Introduction

The existence of a density extremum near 4C
dramatically affects the characteristics of buoy-
ancy induced flows in the cold pure water (Geb-
hart. 1979 : Gebhart. et al. 198%). The occurrence
of bi-directional buoyancy forces in the thermal
boundary layer complicates their stability ana-
lyses. This study is the continuation of Hwang et

al. (1993) to analyze the neutral stability of

laminar vertical natural convection flows in the
cold pure water in the presence of buoyancy force

reversals. In this part. we first treat the case of

upflow, i. e.. outside buoyancy force reversals.

Our results are very accurate because, in con-
trast to the previous works obtained by the
method of simple shooting (e. g.. Higgins and
Gebhart, 1983 ; Qureshi and Gebhart, 1986), the
stability equations has been solved using an ade-
guate computing code (COLNEW) designed to
accurately solve two-point boundary-value prob-
lems (Ascher et al., 1981 :Bader and Ascher,
1985). Moreover, our results are new in that we
have analyzed the neutral stability of three multi-
ple steady-state solutions found in this problem
by El Henawy et al. (1982).

X
Y
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Y
X
(a) Upflow (b) Downflow
Fig. 1 The coordinate systems

Most of the past stability studies has utilized
the Boussinesq formulation of the density as a
linear function of temperature. such as for flows
in air, warm water etc. Recently, Gebhart and
Mahajan (1982) and Gebhart et al. (1988) have
comprehensively summarized the literature in this
regard.

In the present study. the system under consider-
ation (as seen in Fig. 1) is quiescent, cold, pure
water adjacent to a vertical, planar, isothermal,
impermeable surface. In this situation the Bous-
sinesq approximation does not accurately express
the buoyancy force.

This is due to the existence of the density
extremum of cold water (its density is maximum
at T~ 4.029325°C at | bar) in the thermal
boundary layer. A considerable buovancy force
reversal arises across the thermal boundary layer.
To predict the resulting subtle flow patterns, the
following density extremum parameter was
defined by Gebhart and Mollendorf(1978)

Th 1o

— 5= (1)

Re =7,

where 7, and 7, are the temperature of the
isothermal surface and the temperature of the
ambient medium (cold pure water), respectively.

The analysis of the steady-state flows in the
presence of buoyancy force reversals in the range
of 07 R 0.5 is complex. To save space, we only
refer to Wilson and Vyas (1979), Carey and
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Gebhart (1981) for the experimentally observed
flows, El-Henawy et al. (1982), Gebhart and
Mollendorf (1978), and Carey et al. (1980) for the
representation of similarity solutions for such
flows.

This study is concerned principally with the
presentation, for various values of the density
extremum parameter R in the range of 0< R <O0.
1515, of numerical results that predict realistic
physical conditions of neutral stability for the
base flow generated by natural convection adja-
cent to a vertical, isothermal plate (as seen in Fig.
1) in cold pure water.

The hydrodynamic stability of these base flows
is of special interest, since under these conditions
outside buoyancy force reversals (such as those
seen in Fig. 2) exert strong influence upon the
flow and the multiple-steady-state solutions of
El-Henawy et al. (1982) are predicted to exist. Up
to the three steady-states exist at the same R for
the flow (as seen in Fig. 3), in the range 0.15149
< R <0.15180. Their influence on instability will
be shown later.

The numerical study of the hydrodynamic sta-
bility for non-Boussinesq situations is difficult as
mentioned by Hwang et al. (1993). The difficulty
exists partly because the base flow itself is sensi-
tive to buoyancy force reversal via the nonlinear
buoyancy-force term in the mathematical model.
An additional significant difficulty may come
from the presence of a singularity in the linear
stability equations as used by Qureshi (1980) and
Higgins (1981) ; see also, Higgins and Gebhart
(1983) and Qureshi and Gebhart (1986). Thus,
reformulated stability equations of Hwang et al.
(1993) to be solved is required in order to make
them nonsingular.

Due to the difficulties mentioned above, most
of the previous numerical studies were limited to
the stability analyses for the simple cases of
unidirectional buoyancy-induced flow . Hig-
gins(1981) for several values of R with L0 R<
8.0, R-04. and = —0.5 (see also Higgins and
Gebhart, 1983); Qureshi (1980) for R=0 (see
also Qureshi and Gebhart, 1986).

Hwang et al. (1993) obtained rather complete
neutral stability results for the downflow in the

Fig. 2

Fig. 3
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Fig. 4 Distributions of vertical velocity components
f»(n) of the base flows. The arrow indicates
increasing £ =0.0, 0.05, 0.10, 0.11667 and 0.
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range of 0.29181 < R <0.5, where inside buoyancy
force reversals arise. They found that an increase
in the magnitude of inside buoyancy force rever-
sals, which were associated with the locations of
the two points of inflection in the vertical velocity
components of base flow, always caused the flows
to be significantly more unstable.

The experimental studies by Higgins and Geb-
hart (1982) and Qureshi and Gebhart (1981) in
cold water indicated that the density extremum
behavior was found to delay transition, compared
to the results in the water at room temperature.

The present numercal study includes neutral
stability results for the region of the base flows
corresponding to 0.0< R <0.1515 for Pr=11.6.
In particular, neutral stability curves are obtained
at R =0.1515 for the three steady-states of the
base flow which were found by El-Henawy et al.
(1982). The effect of outside buoyancy force rever-
sals on instability will be shown.

2. The Governing Equations

2.1 Base flow

The similarity equations for steady laminar
base flows (with the coordinate definitions in Fig.
1) are well known ; for example, E1-Henawy et
al. (1982), Gebhart and Mollendorf (1978), and
Carey et al. (1980). To formulate them the follow-
ing nondimensional quantities were used: z{a

100
by
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Fig. 5 Distribution of normalized temperature 4,
(n) of the base flow. The arrow indicates
increasing R=0.0, 0.05, 0.10, 0.11667 and 0.
{5

similarity variable), f, () (stream functioin), and
8, (n) (temperature), where

7 :%, ¥, (x,y) =vGf(7)
6 () == 2= (22)

and

c=1(16r @ >%

3
Gr(x) =55 ;| To— Tw|? (2b)

U2

Here a7 and 4 are the thermal expansion coeffi-
cient and exponent, respectively, from the density
relation of Gebhart and Mollendorf (1977). For
conditions at 1 bar pressure and no salinity in the
range of temperature 0< 7 <20C, 24,=9.297173
X 1075(°C ) "7 and ¢ =1.894816. The equations for
the base flow in similarity form are :

S+ 3 efs =218

+6{|6,— R|*—|R|"} =0 (32)

8, + 3Prfo8=0 (3b)
with boundary conditions

F6(0) = f0(0) = f,(0)

=0,(0) —1= 6, (0) =0 (4)

where ¢ = + 1 for upward flow, 8= --1 for down-
ward flow ; see Gebhart and Mollendorf (1978).
Pr=11.6 is the Prandtl number for cold pure
water.
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Here we only considered upward flows in the
range 0.0< R <0.1515, where outside buoyancy
force reversals occured. The boundary-value
problem (3a, b)~(4) was solved on intervals [0,
7e] With 7,=23~300 by using two computer
codes: COLNEW (Ascher et al., 1981 ; Bader
and Ascher, 1985) and BOUNDS (Deuflhard and
Bader, 1982). Examples of dimensionless vertical
velocity and temperature profiles for 0< R <0.15
are given in Figs. 4 and 5, respectively. Also,
Figure 6 from El-Henawy et al. (1982) shows the
velocity profiles of the three multiple-steady-state
solutions for the base flow at R =0.1515.

cause signiftcant
transport. As R

Buoyancy force reversals

effects on hydrodynamic
increases from 0 to 0.15, the downward buoyancy
force, near the outer edge of the thermal boundary
layer increases. For multiple steady-states of the
base flow, the downward buoyancy force, which
becomes stronger, causes an outside flow reversal
as R increases from 0.15 to 0.1515 as shown in
Fig. 6.

As R increases from 0 to 0.1333, the location of
the single point of inflection in the profiles of the
vertical component of velocity shifts closer to the
isothermal surface (7 =0); see Fig. 4 and Table
1. However, for 0.1333< R <0.15, the location of
point of inflection remains 7, ,=0.97 and does
not change singnificantly. But the value of its
—fy (779.1)
increases.

The shift of the location of point of inflectioin
assoctated with its strength might increase the
limit of stability of flow, just as in the forced flow

stress increases significantly as R

problems, which will be discussed later.

2.2 The linear stability equation

A linear stability of two dimensional distur-
bances is considered. The disturbance quantities
are normalized in the following manner, where D
and (J are the charactreristic length and velocity :

o= s =2
_HG) ,o; BD
H(ﬂ)—ApUg,a—a’D, ﬁ_ U
_dx G
—d =G ®)
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Fig. 6 The three multiple-steady-state solutions for
the base flow at R=0.1515, which corre-
spond to 3 points in Fig. 3, in terms of (a)
vertical velocity components £, and (b) hori-
zontal velocity components 37, — zf,. From

El-Henawy et al.(1982)

The reformulated stability equations by Hwang et
al. (1993) are used to avoid the singularity in
buoyancy force term. The nonsingular Orr-
buoyancy-induced

Sommerfeld equations for

flows are:

Xx-momentum,

om0 f @=—H+ L (0"

— a0 +2,5) (6a)
y-momentum,

(i) o=~ 1 (07— a20) (6b)

a

energy,
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(fo—)S— 6,0 T G"l"jr(S” a’S) (6¢)

where ¢ = 8/, § =+1.0 for upflow and ¢ =
— 1.0 for down flow, and

6, —
Zy= ( b r4|9b“quﬁl
the nondimensional boundary conditions for an
tsothermal vertical surface are:

Q0)=0(0) =S(0) =@ (c0)

=S (o0) =H (c0) =() (7
The linear stability Eqgs. (6a~c) and (7) consti-
tute a complex-valued, sixth-order, linear systems
of homogeneous differential equations. The
eigenvalues of the system are the nondimensional
wave number & and frequency 8. The ratio a/f
is referred to as the wave speed c

3. Numerical Method

To reduce the error propagation and to avoid
the inaccuracy in simple shooting of Qureshi
(1980) and Higgins (1981), the two-point-
boundary-value-problem solver COLNEW (As-
cher et al., 1981 ; Bader and Ascher, 1985) was
used. With it we were able to compute the accu-
rate numerical solutions of the stability equations
in the range 0.0< R <0.1515. These could not be
found by simple shooting.

To generate the families of solutions, two differ-
ent ad hoc schemes were used. These are de-
scribed below. Since there is no way to normalize
the solutions of eigenvalue problem (6a~c) and
(7) which is subject to homogeneous boundary
conditions, an alternative must be found to avoid
the trivial solution.

The first scheme, which succeeded, was to
replace the boundary conditions @5(0) = @;(0) =
0 by

Sx0) =k, SH0)=—k (8)
with 0.25< /< 1.0 and 0.1 < 5, < 1.0. For moder-
ate values of &« and B, we use k=4,=1.0. The
computing procedure employed to use the orth-
ogonal collocation code COLNEW for obtaining
the neutral stability curve is described below. For
a given value (G, one guesses a pair of eigenvalues

« and B. One then solves the boundary value
problem (6a~c) and (7) with the modified
boundary conditions (8), replacing @ (0) = @;(0)
=0, using COLNEW, and iterates by adjusting
the values of @ and £ until the boundary condi-
tions Qx(0)= @(0)=0 are satisfied with |@z(0)]
+]@:;(0)| <1078,

The second scheme is to add the trivial differen-
tial equations

a =0, =0 (9)
to the system (6a~c) and to impose two nonzero
conditions Sx0)= —k, and SH0)= — k, in addi-
tion to (7). This scheme yields exact numerical
solutions of the original eigenvalue problem (6a
~c¢), (7) and (9). However, accurate initial gues-
ses are required to get it to work.

When we used the first scheme, we insisted that,
for a solution to be accepted, the following criter-
ia were all met :

. Q; ¢ -

i (1GE Tt t) <107 e

max(JQ;‘j(IQ)i, Ji’é[‘%l)l)ﬁ,l(]\’7 (10b)
where M is the largest magnitude of any of the
eigenvector components(i. e., @, @, @”, S, S,
HY) on 0<% < .. In addition, the error estimates
given on output by COLNEW are less than 10

The second scheme was used for the purpose of
verification and improvement of the numerical
results, which were obtained by the first scheme.

4. Numerical Results

Neutral stability results that have satisfied the
standards for accuracy Egs. (10. a~b) have been
obtained for several values of R in the 0< R <0,
1515. In particular, for R=0.1515, we obtained
neutral stability curves for the three steady-states
of the flow. These results are presented in Table 1
and Figs. 7~10.

Some of our numerical results on stability are
presented in (G, RB)-plane,
where

B= ,e(,w—g”f(yzarm TW9 75 (11)

This parameter B has no x dependence; it is
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Fig. 7 Portions of computed neutral stability curves
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Fig. 8 Portions of computed neutral stability curves
in the (G, 8) plane.

proportional to the physical frequency . Con-
stant frequency paths for (; are horizontal
straight lines in the ((, B)-plane; see Figs. 9
~10.

If |To— 7%] is fixed, a plot or a table in the
neutral stability planes (i. e, (G, B) or (G,
A)-plane also (G, «)-plane) is useful in quantita-
tively analyzing the linear stability results for
various values of R, because the parameters G, «,
£, and B are dependent upon | 75— 7w/ .

The critical Grashof number G, steadily

e

1200

3]

Fig. 9 Computed neutral stability curves in the (G,
B) plane.

¥ L : I !

R=0 18134 f
===« ReQ15138

R=0.1515C
0.9 -

Fig. 10 Computed neutral stability curves in the (G,
B) plane for the three steady-states of the
base flow at R-=0.1515

increases as JP increases in the range 0.0< R <0.
1333, but, interestingly, further increase of R
causes (., to decrease. However, at the same time
the value of B* (i. e., B at G, ) and Bjax cOnsis-
tently decrease as R increases. The nose of a
neutral stability curve shifts downward B=0 in
the (G, B)-plane and its shape becomes sharper
as R increases. As consequence of these observa-
tion, the upper limit of unstable frequencies with
respect to R is predicted to be reduced and the
flow is more unstable for lower frequencies, as R
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Table 1 Values of 5, —fo(#.;), B* and a* for various values of R.

R o1 —fo (1)

(;cr B* (1/*

0.02847
0.02575
0.02574
0.02693

0.0 1.163
0.05 1.086
0.10 1.004
0.11667 0.982
0.1333 0.967 0.02925
0.15 0.971 0.03441
0.1515A - -
0.1515B ~ -
0.1515C - -

41.89 0.19536 0.5928
44.16 0.18027 0.5981
46.55 0.16188 0.6034
47.22 0.15542 0.6081
47.69 0.14506 0.5969
47.39 0.12955 0.5638
47.17 0.12646 0.5548
46.98 0.12449 0.5477
47.01 0.12451 i 0.5473

0.50 0.76 1.00

0.26

n

EIGENVECTORS

-0.25

-0.560

-0.76

. -

o100

.0 2.5 5.0 7.5 10.0
n

Fig. 11 Plots of eigenvector components vs 7z corre-
sponding to the base flow at £==0.05 for ¢ =
0.6893, =0.0570, G=44.60 and #,.==23.2

increases from 0.0 to 0.1515.
It is also observed here that the location of a
point of inflection in a base flow has a strong

relationship to the critical Grashof number G.,.
As R increases from O to 0.1333 (and the heat
transfer rate — 8,(0) decrease from 1.04697 to 0.
8555), the location of the point of inflection 7, ,
in the profile of the velocity of the base flow f;,

shifts from #,,=1.163 at R=0to #,,=0.967 at
R=0.1333; at the same time the stress — £ (7,./)
decreases (see Table 1). In addition, the present
results show that the G, increases from 41.89 at
R=0to 47.69 at R =0.1333. But, as R increases
from 0.1333 to 0.15, the #, ; increases from 0.967
to 0971 and the corresponding —f; (#p.1)
increases from 0.02925 to 0.03441. Also, G
decreases from 47.69 at £=0.1333 to 47.39 at R
=0.15. As the consequence of the above results, it
is found that the shift of z,, to 7=0 with its
weaker stress — f;' (#,.;) makes the velocity pro-
file of the base flow more stable.

These phenomena are due to the effect of
outside buoyancy force slight
increase of the downward buoyancy force in the
outer region of the thermal boundary layer causes
the base flow to be stable, but a further increase of
this force causes the base flow to become unsta-
ble. Note, while buoyancy force reversals occur
for 0< R <0.15, they are too weak to cause any
reversals in the flow.

Figure 1l shows the typical
eigenvector components corresponding to near
the nose of the neutral stability curves at £ =0.05,
which satisfy the accuracy criteria (10. a-b). In
this figure, the real and imaginary parts of

reversals. A

shape of
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eigenvector components (@, @', S, H) are nor-
malized by their maximum values. In this figure,
the maxima or minima of @, @', S, H occur very
close to #=0. The locus of the peak positions
associated with the large value of #,(up to 300 at
R =0.1515) causes serious difficulties in solving
the stability equations as R increases from R =0
toward R=0.15. (Note that the large value of 7.
is inevitably required for accuracy in computa-
tion. This is due to the decrease in the value of 7,
(c0) of the corresponding base flow (El-Henawy
et al., 1982).)

In general, for 0< R <0.1515, the sensitivity of
the eigenvalues a, £ to the modified Grashof
number (5 is so high near the nose of a neutral
stability curve that the ranges between the upper
and lower portions of a neutral stability curve in
the (G, «) or (G, B)-plane are relatively much
wider than the same ranges corresponding to a
flow for 0.29181 < R <0.50 (Hwang et al., 1993).
Also, it is found that the critical Grashof number
G.r corresponding to the flow for 0< R <0.1515
is relatively higher (i. e., (G, =>41.89) than the G,

corresponding to the flow for 0.29181 < R <0.5 (i.
e., Ger<22.81). This significant difference is due

to the characteristic features of the base flows
associated with the outside buoyancy force rever-
sals.

5. Discussion and Conclusion

The present numerical results indicate that
when the parameter R is changed, the characteris-
tic shape of the corresponding neutral stability
curve is systematically changed : the critical Gra-
shof number (., increases for 0< £ <0.1333, but
the upper limit of unstable frequency for flows
Brax and the quantities 8* or B* (i.e, S or BB
at (5.,) decrease at the same time ; see Figs. 8 and
9. It is clear from our stability results that the
unstable frequency range of disturbances becomes
narrower as R increase. In other words, the band
of corresponding favored frequency is reduced.
Also, the neutral stability curves have blunter
noses as R decreases. From the above tendencies,

we conjecture that the corresponding spatial

amplification contours would have more sharply
pointed noses as R increases further toward 0.15.
We also conjecture that the most favored fre-
quency, which is the frequency that, according to
theory, amplifies most quickly as the disturbance
travels downstream, is decreased since both value
of B* and of B,,, decrease as R increases. We
believe these speculations are reasonable even
though we have not performed computations to
obtain the full details of the spatial amplification
contours.

When we compared the stability results of the
present work to the experimental data of Higgins
and Gebhart (1982) at R ~0.0 and R~0.12, the
numerical results agree reasonably in a qualita-
tive way with the experimental data. They obser-
ved that for R0, the data lie at a frequency
slightly higher than the theoretical frequency B=
0.36. The range of frequencies which arose at each
G location is broader than has been observed in

warm water. Some intermittent bursts of turbu-
lence were detected at (=378 for R~0. For R~

0.12, the frequency bands lie closer to, and even
below B=0.36. The band is narrower than that
found at R~0.0. For R=~0.12, Higgins and
Gebhart (1982) observed a small amount of burst
activity at (G=385. From their observation, the
point of transition to turbulence occurs some
eight or nine times of (5., downstream. Also, their
observation implies that the neutral stability
curve corresponding to R =0.12 lies left and shifts
downward with respect to the neutral stability
curve corresponding to =0 (see also Table 1).
Higgins and Gebhart also observed that at =
417, the disturbances corresponding to R=0.12
were more vigorous than those corresponding to
R =0. They judged that disturbances correspond-
ing to R=>0.12 were amplified more quickly
downstream than those corresponding to £ =~0.0.

From the results of our stabilizing calculation,
it is found that there is a stabilizing or destabiliz-
ing effect due to the characteristics of the buoy-
ancy force. In the range 0< £ <0.1333, a small
amount of the buoyancy force reversal causes the
critical Grashof number to increase singnificantly.
However, in the range 0.1333< # <0.15, a further
increase of the outside buoyancy force reversal
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causes the critical Grashof number to decrease.
Namely, as R increases, the first instability of the
flow occurs later for 0< R <0.1333, then occurs
sooner for 0.1333< R <0.15.

At the same time the location of the single
point of inflection 7, , (in the profile of the
velocity of the base flow) and its stress-;7 (7, ;)
strongly dependent upon the downward buoy-
ancy force (in the outer portion of the thermal
boundary layer) as mentioned in sec. 4. Further
increase of this force causes an outside flow rever-
sal which associated with two points of inflection
to exist in the multiple-steady-state-solution
region 0.15< R <0.1518 found by El-Henawy et
al. (1982), such as the two steady-states of the
base flow at R=0.1515 corresponding to the
marks B and C in Figs. 3 and 6. From our results
(as seen in Fig. 10 and Table I), two points of
inflection possess slightly lower values of the
critical Grashof number than those with one.
Thus, it is predicted that further increase of the
downward buoyancy force cause the correspond-
ing flow in the region 0.15< 2 <0.1518 to become
slightly unstable.
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